(October 2026) Experimental techniques # Nanoscale soft X-ray absorption spectroscopy # (nano SX-XAS) # Microscopic researches on physical and magnetic properties for inorganic/organic materials with versatile polarized soft X-ray ### Beamline features - Soft and tender X-ray absorption spectroscopy (180–3000 eV). - Left and right circular and linear polarization in arbitrary directions is produced by four APPLE-II type IDs. A 10 Hz polarization switching system is under construction. At present, ~0.1 Hz switching is available at a fixed X-ray energy. For use of polarization switching, advance consultation is required before proposal submission. - X-ray beam focused to micrometer size using two types of focusing mirrors (Wolter and toroidal mirrors). Nonfocused beam is also available, but advance consultation is required before proposal submission. - Operando spectroscopy under magnetic and/or electric fields, and/or high pressure (planned for the future). - Transmission X-ray microscope (TXM) with a focused X-ray beam of less than 10 nm (currently under construction; scheduled to be available from FY2026 onwards). Note: As of October 1, 2025. The information in this document may be updated during beamtime. If you require important performance parameters, please contact the staff in charge in advance. # Methods - 1. Soft X-raSoft X-ray absorption spectroscopy (XAS) - 2. Soft magnetic circular dichroism (XMCD) - 3. Soft X-ray magnetic linear dichroism (XMLD) ## Beamline information sample | polarization
(energy range) | single ID | left and right circular (185-1450 eV)
horizontal linear (180-3000 eV)
vertical linear (260-3000 eV) | | |--------------------------------|--|--|--| | | four IDs ※ | arbitrary directional linear (185-1450 eV) left and right circular polarization plus 45°/135° linear (260-3000 eV) | | | energy resolution
(Ε/ΔΕ) | >10,000@400 and 870 eV measured at N_2 and Ne absorption edges (For all energy range, ~10,000 is expected) | | | | beam flux on a | $\sim 10^{11}$ photo | ons/sec (estimated) | | ## **Endstation** information ¹) µ XMCD | | μXMCD ¹⁾ | | The X-ray beam can be focused using a Wolter mirror. XMCD measurements can be performed under an arbitrarily oriented horizontal magnetic field. | | |----------|---------------------|---------------------------------|---|--| | A branch | Free
Port A | Versatile
XAS ²) | The X-ray beam can be focused using a toroidal mirror.
Advance consultation is required before proposal submission for the use of a non-
focused beam.
The apparatus is equipped with a differential pumping system. | | | | | Users' own chambers | If you wish to bring your own chamber, advance consultation is required before submitting a proposal. Both focused and non-focused beams are available. | | | B branch | Free Port B | | If you wish to bring your own chamber, advance consultation is required before submitting a proposal. The non-focused beam is available. | | **Four IDs can be used in segmented undulators mode. if you need this mode, please contact us before submitting a proposal. #### 2) Versatile XAS | - | | | | |------------------|---|------------------|--| | Pressure | UHV (<10 ⁻⁶ Pa) | Pressure | HV (10 ⁻⁴ ~10 ⁻⁵ Pa) | | Beam size | < 3 μm (V) × 3 μm (H) | Beam size | 10– 100 μm (V) $ imes$ 17– 100 μm (H) | | method | Total electron yield (TEY), partial and total fluorescence yields (PFY & TFY), X-ray excited optical luminescence (XEOL), Transmission method | method | Total electron yield (TEY), partial fluorescence yield (PFY) Transmission method Omicron type sample holder. Transport of samples using a specific mobile chamber is also available. Advance | | Sample
holder | Omicron type sample holder.
Transport of samples using a specific mobile chamber
is also available. Advance consultation is required. | Sample
holder | | | heating | < 770 K (tentative) | Temperature | consultation is required. Room temperature | | cooling | > 160 K (LN ₂) | misc | This system is applicable to samples
unsuitable for ultra-high vacuum
conditions, such as natural and biological
samples. | | misc | The apparatus is equipped with an evaporation source. An arbitrarily oriented horizontal magnetic field (< 160 mT) generated by a permanent magnet is | | |