(October 2026)

Experimental techniques

Nanoscale soft X-ray absorption spectroscopy

(nano SX-XAS)

Microscopic researches on physical and magnetic properties for inorganic/organic materials with versatile polarized soft X-ray

Beamline features

- Soft and tender X-ray absorption spectroscopy (180–3000 eV).
- Left and right circular and linear polarization in arbitrary directions is produced by four APPLE-II type IDs. A 10 Hz polarization switching system is under construction. At present, ~0.1 Hz switching is available at a fixed X-ray energy. For use of polarization switching, advance consultation is required before proposal submission.
- X-ray beam focused to micrometer size using two types of focusing mirrors (Wolter and toroidal mirrors). Nonfocused beam is also available, but advance consultation is required before proposal submission.
- Operando spectroscopy under magnetic and/or electric fields, and/or high pressure (planned for the future).
- Transmission X-ray microscope (TXM) with a focused X-ray beam of less than 10 nm (currently under construction; scheduled to be available from FY2026 onwards).

Note: As of October 1, 2025. The information in this document may be updated during beamtime. If you require important performance parameters, please contact the staff in charge in advance.

Methods

- 1. Soft X-raSoft X-ray absorption spectroscopy (XAS)
- 2. Soft magnetic circular dichroism (XMCD)
- 3. Soft X-ray magnetic linear dichroism (XMLD)

Beamline information

sample

polarization (energy range)	single ID	left and right circular (185-1450 eV) horizontal linear (180-3000 eV) vertical linear (260-3000 eV)	
	four IDs ※	arbitrary directional linear (185-1450 eV) left and right circular polarization plus 45°/135° linear (260-3000 eV)	
energy resolution (Ε/ΔΕ)	>10,000@400 and 870 eV measured at N_2 and Ne absorption edges (For all energy range, ~10,000 is expected)		
beam flux on a	$\sim 10^{11}$ photo	ons/sec (estimated)	

Endstation information

¹) µ XMCD

	μXMCD ¹⁾		The X-ray beam can be focused using a Wolter mirror. XMCD measurements can be performed under an arbitrarily oriented horizontal magnetic field.	
A branch	Free Port A	Versatile XAS ²)	The X-ray beam can be focused using a toroidal mirror. Advance consultation is required before proposal submission for the use of a non- focused beam. The apparatus is equipped with a differential pumping system.	
		Users' own chambers	If you wish to bring your own chamber, advance consultation is required before submitting a proposal. Both focused and non-focused beams are available.	
B branch	Free Port B		If you wish to bring your own chamber, advance consultation is required before submitting a proposal. The non-focused beam is available.	

**Four IDs can be used in segmented undulators mode. if you need this mode, please contact us before submitting a proposal.

2) Versatile XAS

-			
Pressure	UHV (<10 ⁻⁶ Pa)	Pressure	HV (10 ⁻⁴ ~10 ⁻⁵ Pa)
Beam size	< 3 μm (V) × 3 μm (H)	Beam size	10– 100 μm (V) $ imes$ 17– 100 μm (H)
method	Total electron yield (TEY), partial and total fluorescence yields (PFY & TFY), X-ray excited optical luminescence (XEOL), Transmission method	method	Total electron yield (TEY), partial fluorescence yield (PFY) Transmission method Omicron type sample holder. Transport of samples using a specific mobile chamber is also available. Advance
Sample holder	Omicron type sample holder. Transport of samples using a specific mobile chamber is also available. Advance consultation is required.	Sample holder	
heating	< 770 K (tentative)	Temperature	consultation is required. Room temperature
cooling	> 160 K (LN ₂)	misc	This system is applicable to samples unsuitable for ultra-high vacuum conditions, such as natural and biological samples.
misc	 The apparatus is equipped with an evaporation source. An arbitrarily oriented horizontal magnetic field (< 160 mT) generated by a permanent magnet is 		